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- immutable
- always registered
- always duplicate checked
- always has valid ID/buffer
- never owns buffer
- created by factory methods:
  - StateRegistry::get_initial_state()
  - StateRegistry::get_successor_state(s, op)
- Create temporary states by
   registering them in temporary registry

- Indexed with State objects
- Last accessed registry is cached
- Subscriber mechanism:
  - if Registry is destroyed,
    all stored information is destroyed as well
- Open question: introduce new struct for (StateID + Registry*)? 
StateHandle? Idea: StateID is sufficient if registry is known (e.g., in 
open lists)
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