
1 state_var_t (char/short/int)

2 4 1 2

state_var_t * (“buffer”)

2 4 1 2

SegmentedArrayVector<state_var_t>

3 4 1 2 2 1 1 2 2 4 3 2

2 4 1 31 4 1 2

0 1 2 3

4 5

0 StateID (index)

2 4 1 2 3 4 1 2 2 1 1 2 2 4 3 2

2 4 1 31 4 1 2

0 1 2 3

4 5

2 4 1 2 0

3 4 1 2 1

2 1 1 2

2 4 3 2

2 4 1 3

1 4 1 2

2

3

4

5

hash_set<StateID>

StateRegistry

State

5id =

registry =

buffer =

PerStateInformation<Entry>

0 1 2 3

4 5

Entry Entry Entry Entry

Entry Entry

Entry Entry Entry Entry

SegmentedVector<Entry>

registry1

registry2

hash_map<StateRegistry *, SegmentedVector<Entry>>

0 1
Entry EntryEntry Entry

SegmentedVector<Entry>

- immutable
- always registered
- always duplicate checked
- always has valid ID/buffer
- never owns buffer
- created by factory methods:
 - StateRegistry::get_initial_state()
 - StateRegistry::get_successor_state(s, op)
- Create temporary states by
 registering them in temporary registry

- Indexed with State objects
- Last accessed registry is cached
- Subscriber mechanism:
 - if Registry is destroyed,
 all stored information is destroyed as well
- Open question: introduce new struct for (StateID + Registry*)?
StateHandle? Idea: StateID is sufficient if registry is known (e.g., in
open lists)

Entry
2

	Slide 1

